# CT Reconstruction: From Filtered Back-Projection to Deep Learning

Ran Zhang, PhD
Assistant Professor
Departments of Radiology and Medical Physics





#### 54 Years of History



The first CT scanner, designed by Sir Godfrey Hounsfield, 1971

#### 108 Years of History

Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten

On the determination of functions from their integral values along certain manifolds

Satz II: Bildet man den Mittelwert von  $F(p, \varphi)$  für die Tangenten des Kreises mit dem Zentrum P = [x, y] und dem Radius q:

(II) 
$$F_P(q) = \frac{1}{2\pi} \int_0^{2\pi} F(x\cos\varphi + y\sin\varphi + q,\varphi) d\varphi,$$

so konvergiert dieses Integral für alle P, q absolut.

Satz III: Der Wert von f ist durch F eindeutig bestimmt und läßt sich folgendermaßen berechnen:

(III) 
$$f(P) = - \prod_{n=0}^{1} \int \frac{dF_{P}(q)}{q}.$$

Johann Radon's inversion formula: the mathematical foundation of CT reconstruction, 1917



#### Evolution of CT Reconstruction Methods

- 1970s: Filtered Back-Projection (FBP)
- 2010s: Iterative Reconstruction (IR)
- 2019+: Deep Learning Reconstruction (DLR)



## The "Cinagram"





# Section 1: Filtered Back Projection (FBP)

# Back-Projection









### The Magic: Ramp Filter / Kernel







# Filtered Projections





# Filtered Back-Projection (FBP)







#### Reconstruction Accuracy



FBP reconstruction is "accurate", which can be mathematically proved by the Central Slice Theorem.



### Different Kernels







### Bone Kernel vs. Soft Kernel









#### FBP: Strengths and Limitations

#### Pros:

- Extremely fast and computationally efficient
- High spatial resolution
- Natural noise texture, familiar to radiologists

#### Cons:

- X Highly sensitive to noise
- X Prone to artifacts with imperfect data



# Section 2: Iterative Reconstruction (IR)

#### **Iterative Reconstruction**

FBP View: Image as a Smooth, Countinuous Object



IR View: Image as a Discretized Matrix of Pixels





### A Simple Example





$$p_1 = 3$$
  $p_2 = 7$   $p_3 = 4$   $p_4 = 6$   $p_5 = 5$ 

#### **Initial Guess**

$$q_1 = 5$$
  
 $q_2 = 5$ 





$$\Delta_3 = q_3 - p_3 = 1$$





Final Estimation







#### Iterative Reconstruction (1970s)

- 1970s: Algebraic Reconstruction Technique (ART)
  - The Kaczmarz method developed in 1937 provided the mathematical foundation for ART
  - Used in EMI Mark 1 CT
- In most cases, FBP and ART should generate the "same" image
  - FBP is much faster and more stable
  - FBP quickly replaced IR as the reconstruction algorithm in CT



### The Return of IR (2000s-2010s)

Driving forces: low dose CT and GPU computing

- Compared with FBP, IR can better handle noise and non-ideal system conditions
  - Statistics modeling (noise)
  - Physics modeling (focal spot, spectrum, detector response...)
  - Image modeling (prior knowledge of the image: smoothness, sparsity)



 $\widehat{x} = \arg\min_{x} \left| \frac{1}{2} \|y - Ax\|_{W}^{2} + \lambda R(x) \right|$ 



### The R(x) term

- R(x) is often being called
  - Regularizer (The mathematician's view)
  - Denoiser (The image processor's view)
  - Image prior (The Statistician's view)
- Total Variation (TV)
  - Calculate the discrete gradient map
  - Sum the values





Gradient Map





#### TV Minimization: the Good and the Bad





### The Noise Texture Problem









#### Commercial IR Algorithms

#### Hybrid IR

- IRIS, Siemens Healthineers, 2009
- ASIR, GE Healthcare, 2011
- SAFIRE, Siemens Healthineers, 2011
- iDose, Philips Healthcare, 2011
- ASIR-V, GE Healthcare 2014
- AIDR3D, Canon Medical Systems, 2012

#### **MBIR**

- Veo, GE Healthcare, 2011
- ADMIRE, Siemens Healthineers, 2012
- IMR, Philips Healthcare, 2013
- FIRST, Canon Medical Systems, 2016







# Section 3: Deep Learning Reconstruction

#### Review of Classical Reconstruction Methods

#### **FBP**

#### Pros:

- Extremely fast, and efficient
- High spatial resolution
- Natural noise texture, familiar to radiologists

#### Cons:

- X Sensitive to Noise
- X Prone to artifacts for non-ideal imaging conditions

#### **Iterative Reconstruction**

#### Pros:

- ✓ Handle noise and imperfect data
- Incorporate system models and object models

#### Cons:

- X Slow due to iteration
- X Noise texture problem introduced by the regularization term



### Why Deep Learning?

### The Fundamental Limitation of Classical Methods: Overly Simplified Models

- FBP: idealized mathematical model
- IR: overly simplified object model

#### A Better Approach: Learn from Data

- Build a model with millions/billions of parameters
- Use millions/billions of data to "fit" model parameters

Input: Low dose CT images



backpropagation

Output: Estimated normal dose images



Label: Real normal dose images



### **DLR Implementations**





#### Commercial DLR Algorithms

#### Vendor-specific

- TrueFidelity, GE Healthcare, 2019
- AiCE, Canon Medical Systems, 2019
- Deep Resolve, Siemens Healthineers, 2021
- Precise Image, Philips Healthcare, 2022

#### Vendor-neutral (Denoising)

- PixelShine, AlgoMedica, 2020
- ClariCT.AI, ClariPi, 2020



### Image Quality Improvements





Zhang R, Szczykutowicz TP, Toia GV. Artificial intelligence in computed tomography image reconstruction: a review of recent advances. Journal of Computer Assisted Tomography. 2025 Jul 1;49(4):521-30.

### Challenges of DLR

- The generalizability problem
- Risk of hallucinations
- The "Black Box" problem
- Instability



