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The first CT scanner, designed by 
Sir Godfrey Hounsfield, 1971

54 Years of History

Johann Radon’s inversion formula: the mathematical 
foundation of CT reconstruction, 1917

108 Years of History



Evolution of CT Reconstruction Methods
• 1970s: Filtered Back-Projection (FBP)

• 2010s: Iterative Reconstruction (IR)

• 2019+: Deep Learning Reconstruction (DLR)



The “Sinogram”
Data Acquisition

Image Reconstruction






Section 1: Filtered Back 
Projection (FBP) 



Back-Projection

Original Sinogram
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The Magic: Ramp Filter / Kernel
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Ramp Filter (Frequency Domain)
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Filtered Projections

∗
 

   

 

   

=






Filtered Back-Projection (FBP)
 

 

 

Filtered Sinogram
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Original Phantom
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Simple Backprojection (No Filter)
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10 4 Filtered Backprojection (Ramp)
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Reconstruction Accuracy

FBP reconstruction is “accurate”, which can be mathematically 
proved by the Central Slice Theorem. 
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Different Kernels
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Textbook Kernels

Ramp
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Bone Kernel vs. Soft Kernel
bone soft



FBP: Strengths and Limitations

Pros:
 Extremely fast and computationally efficient
 High spatial resolution
 Natural noise texture, familiar to radiologists

Cons:
 Highly sensitive to noise
 Prone to artifacts with imperfect data



Section 2: Iterative 
Reconstruction (IR) 



Iterative Reconstruction
FBP View: Image as a Smooth, Countinuous Object IR View: Image as a Discretized Matrix of Pixels



𝝁𝝁𝟏𝟏 𝝁𝝁𝟐𝟐

𝝁𝝁𝟑𝟑 𝝁𝝁𝟒𝟒

A Simple Example

𝑝𝑝1 = 𝜇𝜇1 + 𝜇𝜇2

𝑝𝑝2 = 𝜇𝜇3 + 𝜇𝜇4

𝑝𝑝3 = 𝜇𝜇1 + 𝜇𝜇3 𝑝𝑝4 = 𝜇𝜇2 + 𝜇𝜇4

𝑝𝑝5 = 𝜇𝜇2 + 𝜇𝜇3

𝟏𝟏 𝟐𝟐

𝟑𝟑 𝟒𝟒

𝑝𝑝1 = 3 𝑝𝑝2 = 7

𝑝𝑝3 = 4 𝑝𝑝4 = 6

𝑝𝑝5 = 5

𝟐𝟐.𝟓𝟓 𝟐𝟐.𝟓𝟓

𝟐𝟐.𝟓𝟓 𝟐𝟐.𝟓𝟓

Initial Guess

𝑞𝑞1 = 5
𝑞𝑞2 = 5

Forward Projection

Δ1 = 𝑞𝑞1 − 𝑝𝑝1 = 2

𝟏𝟏.𝟓𝟓 𝟏𝟏.𝟓𝟓

𝟑𝟑.𝟓𝟓 𝟑𝟑.𝟓𝟓

Back Projection

Δ2 = 𝑞𝑞2 − 𝑝𝑝2 = −2

Δ3 = 𝑞𝑞3 − 𝑝𝑝3 = 1

𝟏𝟏 𝟐𝟐

𝟑𝟑 𝟒𝟒

Δ4 = 𝑞𝑞4 − 𝑝𝑝4 = −1

Δ5 = 𝑞𝑞5 − 𝑝𝑝5 = 0

Δ1, Δ2, Δ3, Δ4 = 0
Final Estimation



Iterative Reconstruction (1970s) 
• 1970s: Algebraic Reconstruction Technique (ART)

• The Kaczmarz method developed in 1937 provided the mathematical 
foundation for ART

• Used in EMI Mark 1 CT

• In most cases, FBP and ART should generate the “same” image 
• FBP is much faster and more stable
• FBP quickly replaced IR as the reconstruction algorithm in CT



• Driving forces: low dose CT and GPU 
computing

• Compared with FBP, IR can better handle 
noise and non-ideal system conditions
• Statistics modeling (noise)

• Physics modeling (focal spot, 
spectrum, detector response…)

• Image modeling (prior knowledge of 
the image: smoothness, sparsity)

The Return of IR (2000s-2010s) 

Image Synthetic 
Sinogram

Virtual scan
(statistics, physics)

Error

Compare with 
measured sinogram

Image update
(Prior knowledge of 

the image / regularizer)

�𝑥𝑥 = arg min
𝑥𝑥

1
2 𝑦𝑦 − 𝐴𝐴𝐴𝐴 𝑊𝑊

2 + 𝜆𝜆𝑅𝑅(𝑥𝑥)



• 𝑅𝑅(𝑥𝑥) is often being called
• Regularizer (The mathematician’s view)
• Denoiser (The image processor’s view)
• Image prior (The Statistician’s view)

• Total Variation (TV)
• Calculate the discrete gradient map
• Sum the values

The 𝑅𝑅(𝑥𝑥) term Original CT Image

 

    

  

Gradient Map

Total Variation (TV) = 2629
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TV Minimization: the Good and the Bad
       

      

 

3. Image + Slow Variations

(Desired Features)
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Gradient Map

 TV = 27 (+68%)
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1. Clean Piecewise-Constant Image

(Baseline)
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Gradient Map

 TV = 16
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   2. Image + Noise

(Undesired Feature)
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Gradient Map

 TV = 128 (+705%)
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The Noise Texture Problem

      

Noisy Image Denoised with TV Minimization        

Szczykutowicz TP. Optimizing Protocols for Today’s Feature-Rich 
Scanners. Medical Physics Publishing, 2020.



Commercial IR Algorithms

• IRIS, Siemens Healthineers, 2009
• ASIR, GE Healthcare, 2011
• SAFIRE, Siemens Healthineers, 2011
• iDose, Philips Healthcare, 2011
• ASIR-V, GE Healthcare 2014
• AIDR3D, Canon Medical Systems, 2012

Hybrid IR

• Veo, GE Healthcare, 2011
• ADMIRE, Siemens Healthineers, 2012
• IMR, Philips Healthcare, 2013
• FIRST, Canon Medical Systems, 2016

MBIR

Image Sinogram

ImageSinogram



Section 3: Deep Learning 
Reconstruction 



Review of Classical Reconstruction Methods

FBP
Pros:

 Extremely fast, and efficient
 High spatial resolution
 Natural noise texture, familiar to radiologists

Cons:
 Sensitive to Noise
 Prone to artifacts for non-ideal imaging 

conditions

Iterative Reconstruction
Pros:

 Handle noise and imperfect data
 Incorporate system models and object 

models

Cons:
 Slow due to iteration
 Noise texture problem introduced by the 

regularization term



Why Deep Learning?

The Fundamental Limitation of Classical 
Methods: Overly Simplified Models
• FBP: idealized mathematical model
• IR: overly simplified object model

A Better Approach: Learn from Data
• Build a model with millions/billions 

of parameters
• Use millions/billions of data to “fit” 

model parameters

Input: 
Low dose CT images  

Output: 
Estimated normal 
dose images  

Label: 
Real normal dose 
images  

Error 
backpropagation



DLR Implementations



Commercial DLR Algorithms

• TrueFidelity, GE Healthcare, 2019
• AiCE, Canon Medical Systems, 2019
• Deep Resolve, Siemens Healthineers, 2021
• Precise Image, Philips Healthcare, 2022

Vendor-specific

• PixelShine, AlgoMedica, 2020
• ClariCT.AI, ClariPi, 2020

Vendor-neutral (Denoising)



Image Quality Improvements

FBP DLR-High Hybrid IR 100%

Zhang R, Szczykutowicz TP, Toia GV. Artificial intelligence in computed tomography 
image reconstruction: a review of recent advances. Journal of Computer Assisted 
Tomography. 2025 Jul 1;49(4):521-30.



• The generalizability problem

• Risk of hallucinations

• The “Black Box” problem

• Instability

Challenges of DLR



Thank you!
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